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Abstract

Two imaging studies were performed – one of an algebraic transformation task studied

by Anderson, Reder, and Lebiere  (1996) and the other of an abstraction symbol

manipulation task studied by Blessing and Anderson (1996).  ACT-R models exist that

carefully model the latency patterns in these tasks.  These models require activity of an

imaginal buffer to represent changes in the problem representation, in a retrieval buffer to

hold information from declarative memory, and in a manual buffer to hold information

about motor behavior.  A general theory is described about how to map activity in these

buffers onto the fMRI bold response.  This theory claims that the BOLD response is

integrated over the duration a buffer is active and can be used to predict the observed

BOLD function.  Activity in the imaginal buffer is shown to predict the BOLD response

in a left, posterior parietal region; activity in the retrieval buffer is shown to predict the

BOLD response in a left DLPFC region; and activity in the manual buffer is shown to

predict activity in a motor region.
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Cognitive models have been increasingly successful at accounting for complex data sets

on problem-solving (Anderson & Lebiere, 1998; Meyer & Kieras, 1997; Pew & Mavor,

1998).  Largely, these cognitive models have focused on reaction time and accuracy and

usually only final times and accuracies.  These models often specify rather complex

sequences of unseen processes taking place over many seconds.  Even when the pattern

of data they fit is correspondingly complex, one is naturally wary about a chain of

inferences about unseen processes.  It would be better if we could have data about these

intervening processes.  Basically, more converging data would be better.  This paper will

demonstrate the potential of functional magnetic resonance imaging (fMRI) data to

provide one source of converging evidence.  Symmetrically, the paper will show the

potential of cognitive models to give a precise explanation of the blood oxygen level

dependent (BOLD) response.

The ACT-R theory (Anderson & Lebiere, 1998), particularly in its current 5.0 version,

has made itself open to such data.  Figure 1 illustrates the basic architecture of that

system.  The external and internal system interact through a set of cortical buffers that

hold information.  Particularly important to this paper are the goal buffer, the imaginal

buffer, the motor buffer, and the retrieval buffer.  The goal buffer keeps track of one’s

internal intentions in solving a problem.  The imaginal buffer essentially keeps a visual

image of the problem state – all problem-state representations need not be visual but they

are in the algebraic tasks we will be investigating.  The manual buffer (Byrne &

Anderson, 1998) is used to program hand movements and is based on the EPIC (Meyer &
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Kieras, 1997) manual processor.  The retrieval buffer requests information from

declarative memory and holds the retrieval results.  The ACT-R 5.0 specifies when these

buffers will be active during the performance of such a task and for how long.

Our main concern in this paper is with the activity of these buffers in ACT-R and their

corresponding cortical regions, but we will say a little about how we assume they interact

with the rest of the system in Figure 1.  In line with other proposals (e.g., Amos 2000;

Frank, Loughry, & O'Reilly 2000; Houk & Wise, 1995; Wise, Murray, & Gerfen, 1996)

we assume that these cortical areas project to the striatum which serves as a pattern

recognition function.  The basal ganglia essentially implement production rules in ACT-R

which recognize and act on patterns in the cortical areas.  Since production rules

represent ACT-R’s procedural memory this also corresponds to proposals that basal

ganglia serve as a procedural memory (Ashby & Waldron, 2000; Hikosaka et. Al, 1999;

Saint-Cyr, Taylor, & Lang, 1988).  An important function of the production rules is to

update the buffers (and there are projections from the thalamus to all of these regions).

Thus, the critical cycle in ACT-R is one in which the buffers hold representations

determined by the external world and internal modules, patterns in these buffers are

recognized and a production fires, and the buffers are then updated for another cycle.

The plan of this paper will be to take tasks for which there already existed well-specified

ACT-R models, determine the predictions about module activities, and look for neural

correlates.  We will describe two experiments based on the research of Anderson, Reder,

and Lebiere (1996) and Blessing and Anderson (1996), for which there already exist
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ACT-R models.  The Anderson, Reder, and Lebiere paper looked at solving of algebraic

equations of different complexity and with or without a concurrent memory load.  The

processes we will propose for their solution do not require any mathematics-specific

faculties but general faculties such as for goal maintenance, visual representation or

problem state, motor, and declarative retrieval.  To confirm that the neural correlates

found in this experiment are not specific to mathematical problem solving we looked at

the symbol manipulation task of Blessing and Anderson that has removed all of the

arithmetic content.  It allows a strong converging test of our theory because we can use

the regions of interest uncovered in the one study to organize the fMRI data for the other

study.

Before describing these experiments, we would like to say a bit about the cortical regions

that we expect to see corresponding to the buffers in Figure 1. The goal and the retrieval

buffers are rather difficult to separate, both in the behavior of ACT-R and in terms of

their localization.  Both retrieval operations and goal-setting operations have been

associated with the prefrontal cortex. The HERA model (Nyberg, Cabeza, & Tulving,

1996; Tulving, Kapur, Craik, Mosovitch & Houle, 1994) associates episodic and

semantic retrieval with right and left prefrontal cortex, respectively.  In their recent

review, Cabezza and Nyberg (2000) usually found activation in classic prefrontal areas

like Brodmann’s areas 9, 44, 45 and 46.  These same areas also tend to be active in task

that involve goal manipulations like task switching (Sohn, Ursu, Anderson, Stenger, &

Carter, 2000), Stroop (MacDonald, Cohen, Stenger, & Carter, 2000), and the Wisconsin

Card Sorting task (Berman, Ostrem, Randolph, Gold, Goldberg, Coppola, Carson,
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Herscovitch, & Weinberger, 1995; Goldberg, Berman, Fleming, Ostrem, Van horn,

Esposito, Mattay, Gold, & Weinberger, 1998).  In the ACT-R model, goal changes often

require retrieval of relevant information.  Thus, the predictions for the two buffers are

often correlated.  We will focus on the behavior of the retrieval buffer, because that is

somewhat easier to quantify in ACT-R, leaving open the possibility that effects we

attribute to it might be attributed the goal buffer.  In any case, the hypothesis is that use of

the retrieval buffer will be correlated with activity in prefrontal cortex.  Note that the

assumption is that the retrieval buffer holds the products of the retrieval, but in line with

other proposals the actual memories are stored in other structures.

The visual imagery buffer holds a representation of visual problems during the course of

their solution.  Given that skilled algebraic manipulation is thought to be highly visual

and spatial (Kirsher, 1989; Kirsher & Awtry, submitted) we expect to see changes in the

mental state of the equation represented by changes in that buffer.  The literature on

spatial imagery would associate that with the posterior parietal cortex (Brodmann’s areas

7, 39, and 40).  In their review, Cabezza and Nyberg note that these regions are active in

almost every study of imagery.  Reichle, Carpenter, and Just (2000) find greater

activation in this area when participants engage in an imagery strategy during language

processing and that this is more concentrated in the left parietal regions.  Perhaps it is

concentrated in the left parietal region because of its connection with the symbolic

structure.  Since algebra is likewise a meaningful symbol system, our hypothesis is that

activation in the left parietal region will track changes in the visual buffer which in turn

will reflect changes to the equation representation.
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With respect to the manual buffer, it is devoted in ACT-R to representing and monitoring

hand movement usually as part of motor programming.  It would be natural to associate it

with the region of motor cortex that in fact controls the hand.   In some sense, including

the manual buffer provides us with an anchor point in our interpretation and model fitting

since there is good prior localization of the region that is responsible for hand

movements.  If we can predict its behavior with the same parameters as used for the more

cognitive buffers, this will make the association of the cognitive buffers with their areas

more secure.

Experiment 1

Table 1 illustrates the 6 conditions of our experiment which were closely modeled on

Anderson, Reder, and Lebiere (1986) although some changes were made to meet the

methodological demands of the magnet.  The equations either required 0, 1 or 2 algebraic

transformations to solve.  Orthogonal to this, the equations could have two letter

constants in them and the participants would have to substitute values they had just

learned for these constants.  Figure 2 illustrates the basic structure of the fMRI trial.  The

trial began with 3 seconds for study of assignments for three constants.  Then an equation

was exposed, which might or might not involve two of these constants, and it remained

on for 7.5 seconds.  This was followed by a white * for 7.5 seconds to allow the

hemodynamic response to settle, followed by a red + for 3 seconds to alert the participant

to the next upcoming trial.
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Anderson et al. (1996) had found that this task could be understood by tracking its

retrieval requirements.1  There are two types of retrievals, which they found weighted

equally in determining accuracy and latency.  One type involved arithmetic retrievals

which had two subtypes--- retrieving arithmetic facts like 6*3=18 and the other was

retrieving information about operator inverses (e.g., - is the opposite of + — a fact that is

required to undo a plus operation).  The other major type was retrieval of the assignments

of values to constants just made (such as b = 5).  While ACT-R treats these two retrievals

as of the same kind; it was not obvious that they would be so treated by the brain.

Indeed, based on the HERA model one might categorize the first as semantic and predict

that they would occur in the left prefrontal cortex and the second as episodic and predict

that they would occur the right prefrontal cortex.

Method

Task and Procedure

Table 1 shows samples of equations used in this experiment.  The participant’s task was

to solve the equation (i.e., isolate the x), and key in the correct answer.  The answers

ranged from 6 to 9.  Participants used the right index, middle, ring, and the little fingers

in a response glove to indicate 6 through 9, respectively.

At the beginning of a trial, a memory set of 3 integers was presented for 3 seconds, which

was replaced by an algebra equation.  Participants were instructed to rehearse these

integers until the equation appeared, because half of the algebra equations would require
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substitution of constants with these integers.  No additional tasks were required regarding

the memory set other than the substitution.  The equation itself remained on the screen for

7.5 seconds.  If no response was given during this time, the trial was scored as incorrect.

The equation then was replaced by an asterisk “*” for 7.5 seconds of rest.  Finally, a plus

sign “+” appeared for 3 seconds of warning for the next trial.

Parametric design

Two factors were manipulated.  First, equations differed in computational complexity.

The 0-transformation problems did not require any algebraic transformations.  These

equations always contained “1” as the slope, and “0” as the constant (e.g., 1x+0=06).

Therefore, the answer can be the integer on the right-hand side of the equation.  The 1-

transformation problems required moving either the constant or the slope to the right-

hand side of the equation, but not both.  The 2-transformation problems required moving

both constant and slope to solve.  Rather unusual presentation format of algebra equations

that we adopted (such as keeping “1” and “0” for simpler questions) was to keep the

visual fields of the stimuli as consistent as possible across different problem

complexities.

Second, the integers for an equation were either directly available from the equation (no-

substitution) or had to be retrieved from the memory set (substitution).  The memory set

consisted of three integers.  Participants were instructed to treat them as the values for the

constant ‘a’, ‘b’, and ‘c’, in left to right order.  In the substitution condition, the

subsequent equation contained two of these constant letters (e.g., a / x – b = 12), and a
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participant had to retrieve the values for these constants to solve the equation.  In the no

substitution condition, the values were given directly in the equation.

Pre-scan practice

Participants took about 30 minutes of pre-scan practice on the day before the scan day.

At first, key-practice program was run to acquaint them with the finger-to-key mapping

with a hand-held response glove (press the index finger for 6, the middle finger for 7, the

ring finger for 8, and the little finger for 9). Then there were 4 blocks of task practice, 18

trials for each block.  The feedback on accuracy and reaction time was given in the end of

each trial in the first two blocks.  In the last two blocks, no trial-by-trial feedback was

given to correspond to the procedure in the scanner.

Event-related fMRI scan

Event-related fMRI data was collected by using a single-shot spiral acquisition on a GE

3T scanner, 1500 ms TR, 18 ms TE, 700 flip angle, 20 cm FOV, 3.2 mm thick, 64x64

matrix, 28 slices with AC-PC on the 8th slice from the bottom. There were 14 scans (21

seconds) for each trial, 18 trials for a block and 8 blocks for each participant.  There was

no trial-by-trial feedback.  The protocol of each trial of scan is illustrated in Figure 2.

Images acquired were analyzed using the NIS system.2 Images first were realigned using

12-parameters AIR (Woods, Grafton, Holmes, Cherry, & Mazziotta, 1998) and then

cross-registered to a common reference brain by minimizing signal intensity difference

after which functional images were set to a standard mean intensity, smoothed (8mm
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FWHM 3D Gaussian kernel) and pooled across subjects to improve signal-to-noise ratio.

Spatial F-maps were generated using ANOVA.  Regions of interesting (ROIs) were

identified by thresholding spatial F-maps of condition (with the requirement of six

contiguous voxels, p<=0.01, with df corrected by Greenhouse-Geisser).

Participants

Participants were 8 right handed, native English speakers (4 females).  Age ranged from

19 to 23, average 21.5.

Results

Average accuracy was 84.7% and accuracy showed a strong negative correlation with

latency (r = -.878).  Only correct trials were analyzed.  Figure 3 shows the latency results

from the experiment.  There are large and significant effects of both number of

transformations (F(2, 14) = 260.44, p <.0001; MSE = 81,806) and substitution ((F(1,7) =

135.14; p <.0001, MSE = 154,207) and no interaction between these factors (F(2 14) =

.83; MSE = 74,115).  As can be seen these latency effects are consistent with the ACT-R

model that we will present.

Analysis of latency and fMRI data was restricted to trials on which the participants were

accurate.  Regions of interest (ROIs) were selected according to the interaction term in a

6 condition x 14 scans ANOVA.   To have a conservative test that dealt with non-

independence of scans we used the correction of assigning only 5 degrees of freedom to

the numerator in the F-statistic for the interaction term (the Greenhouse-Geisser
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correction for non-independence of conditions).  The interaction was examined in each

voxel, and the selected regions met the criteria of minimum 6 contiguous voxels with

significant interaction at p <= .01 (Forman, Cohen, Fitzgerald, Eddy, Minton, & Noll,

1995).  Figure 4 and Table 2 give the seven regions which achieve this level of

significance.  Figure 4 only displays the top 16 slices since there were no significant

voxels found lower in the brain.  ROIs 1 & 3 are in the posterior parietal cortex and ROI

2 is in the anterior cingulate gyrus.  ROI 1 has been found to be active in almost all

studies of mathematical thinking (e.g., Dehaene, Spelke, Pinel. Stanescu, & Tsivkin,.

1999; Menon, Rivera, White, Glover, & Reiss, 2000; Zago, Pesenti, Mellet, Crivello,

Mazoyer, & Tzourio-Mazoyer, 2001; Gruber, Indefrey, Steinmetz, & Kleinschmidt,

2000; Rickard, Romero, Basso, Wharton, Flitman, & Grafman, 2000).  ROI 3 is the

precuneous which has also been found active in a number of studies (e.g., Dehaene, et al;

Zago, et al).  ROI 4 is the left inferior frontal gyrus (BA 44 but above the classic Broca's

region) which again has been found in almost all studies of mathematical thinking.  ROI

5 is a prefrontal region at the border between Brodman’s areas 45 and 46 which has also

been found to be active in some studies (Zago, et al.; Gruber, et al.). Regions 6 and 7 are

left and right Superamarginal gyrus (Brodman’s area 40). Except for ROI 2, which is

central, and ROI 6, which is right, the areas of activation are in the left cortex.  This is

typical of imaging studies of mathematical tasks.  Damage in the vicinity of ROI 1, 3 and

7 has also been shown to be associated with acalculia or dyscalulia (Grafman, 1996;

Russeli & Ardelia, 1989; Jackson & Warrington, 1986).
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Figure 5 shows the activation function for these 7 regions, averaged over condition, as a

function of the 14 scans.  The dependent measure is percent activation over the baseline

set by scan 1.  The figure makes the point that the inferior supramarginal ROIs 6 and 7

display somewhat peculiar but similar functions, first falling below zero and then rising

above 0. Zago et al (2001) found deactivation in these regions when participants perform

calculations. All of the other regions show relatively similar rises and falls.  Table 3

shows the intercorrelations between the 7 areas in terms of the 84 observations of the

percent change in a conditionxscan analysis.  The posterior parietal ROIs 1 and 3 are

quite similar with correlations over .9 as are the prefrontal ROIs 4 and 5. While these are

the highest intercorrelations, the intercorrelations are positive and fairly strong except for

those with ROI 6 and ROI 7, which do not correlate positively with any region except

each other.  We will focus our analyses on ROI 1 and ROI 5.  Both ROI 1 and 3 are from

the left posterior parietal region that we expect to be associated with the imaginal buffer

in ACT-R.  ROI 1 is chosen because it is larger and more reliable but note its high

correlation with ROI  3.  The 2 prefrontal regions, ROI 4 and ROI  5, also behave

similarly.  We have chosen to focus on ROI 5 because it is more classic DLPFC.  We also

chose a third area for investigation, which did not prove to yield a significant interaction

in this experiment but did in the next experiment.  This is a region that covers the motor

and sensory regions corresponding to the right hand.  Its exact coordinates will be given

as part of Experiment 2 (see ROI 1 in Table 6).  The three regions of interest are

displayed in Figure 6.
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Figure 7 contrasts the behavior of these three regions in the two extreme conditions – no

transformation with no substitution versus 2 transformations with substitution.  All

regions show effects of condition but show different patterns.   The posterior parietal and

DLPFC particles are quite similar in the most complex condition of 2 transformations

with substitution.  However, they are dramatically different in the simplest condition of

no transformations and no substitution.   The posterior parietal particle shows about half

the rise as the most complex condition while the DLPFC particle appears to show no

effect.  As we will see, the DLPFC particle is more sensitive to our complexity

manipulation.  The motor particle does not show greater magnitude of response in the

more complex condition but a greater delay in peaking and a wider distribution – which

would be consistent with a later and more variably-timed response.

ACT-R Model

We will now describe the ACT-R model that we developed to fit the behavior profile in

Figure 3 and the fMRI functions for these three regions.  A complete ACT-R model for

performing the experiment and all the conditions is available from web location.  It was

based on the model in Anderson, Lebiere, and Reder (1996), only being updated from

ACT-R 2.0 to ACT-R 5.0.  Its two essential aspects are a sequence of transformations of

the internal representation of the equation and retrievals.  Figure 8 illustrates these for the

most complex condition of two transformations with substitution.  While there are other

things happening involving internal computations, the critical steps involve imaginal

transformations, which take 200 msec. each; retrieval operations, which takes an
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estimated 600 msec.; and a final motor operation, which takes an 400 msec.  Only the

retrieval time of 600 msec was estimated to fit the behavioral data.  ACT-R has a theory

of the microstructure of these retrievals but for current purposes we can treat them as

simply taking this fixed time.

The equations have 4 significant symbols that have to be encoded – the term on the right

(the c in Figure 8), the first term on the left (the 3 in Figure 8), the operator (the + in

Figure 8), and the term before the X (the a in Figure 8).  Each time one of these symbols

is encoded there is a transformation in the visual image of the equation.  The other two

symbols (the X and the =) are predictable and are encoded into the equation as part of one

of these transformations.  In addition, the visual image is transformed if there is a

substitution or an algebraic transformation.  Thus, depending on condition the number of

transformations of the visual image is

V = 4 +2S +A

where S = 0 if there are no substitutions and 1 if there are, and A is the number of

algebraic transformations.

There are two retrievals required in the case of substitution, one for each algebraic fact

retrieved, and 1 to retrieve the inverse of the + or -.  (We assume that an inverse operator

need not be retrieved in the case of the second operation because it is always divide).

Thus the number of retrievals is
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R = 2S + 1.5 A

where the 1.5 reflects the fact that two retrievals are required for one of the 1-

transformation-condition and only one is required for the other.

Finally, there is always just one motor action and its timing varies with the timing of the

response.  The fact that there is just a single action may explain why the motor area did

not appear as a significant region in this study.  It will be significant in the next study

where 5 finger presses will be required.

How do the activities of these buffers map into changes in the fMRI signal?  A number of

researchers (e.g., Boyton et al., 1996; Cohen, 1997; Dale & Buckner, 1997) have

proposed that the BOLD response to an event, t time units ago, varies according to the

following function:

B(t) = t ae− t

where estimates of the exponent have varied between 2 and 10.  What we propose is that

while a buffer is active it is constantly producing a change that will result in a BOLD

response according the other above function.  The observed fMRI response is integrated

over time the buffer is active.  Therefore, the observed BOLD response will vary with

time as

CB(t) = M i(x)
0

t

∫ B(
t − x

s
)dx
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where M is the magnitude scale for response, s is the latency scale, and i(x) is 1 if the

buffer is occupied at time x and 0 otherwise.  Thus, the parameters to be estimated in

fitting the BOLD response are M, s, and a.  We assume that the scale s and exponent a

will be constant across all regions of interest but that the magnitude M could differ with

region of interest.  So, we will estimate a single s and a and a separate M for each regions

of interest to produce best fits for the BOLD signal for each of the 6 conditions.  Since

there are 3 regions of interest, 6 condition, and 14 scans this means we are fitting 3 x 6 x

14 = 252 observations.

There is one complication to our efforts to fit the BOLD responses and this is setting the

zero value for each condition.  The data in Figures 6 and 7 are graphed as percent change

in the BOLD response with respect to scan 1.  However, assigning scan 1 as the zero

value makes the data particularly subject to any error in the estimate of the BOLD

response for that scan.  Therefore, we estimated for each condition an ROI offset for scan

that yielded best fits to all 14 scans.  These constants are subtracted from the percent

change BOLD responses for all scans for that condition and ROI.  These 18 (6 x 3)

corrections tended to be close to zero and amount to lifting or lowering the function a

little from what it would be if scan 1 were taken as exactly zero value.  These corrections

mean that our total parameters are 18 + the 5 theoretically significant parameters.  These

parameters are reproduced in Table 4.  These parameters were estimated by trying to

minimize the following quantity:
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where B ijk  is the mean bold response,  ˆ B ijk

(
k ∈Scans
∑

j∈Conditions
∑

i∈ROIs
∑ B ijk − ˆ B ijk )2 / si

2

 is the predicted response, and s
i
2 is the

mean error in the bold response for ROI i calculated by the interaction between the 84

values (6 conditions x 14 scans) by 8 subjects interaction term.  Under the hypothesis that

all deviations are noise, this quantity is distributed as a chi-square with degrees of

freedom equal to the number of observations (252) minus parameters (23)—that is, 229

degrees of freedom.  The value of this quantity is 347.86, which is quite significant

indicating, not surprisingly, that there are things in the data not predicted by the model.

On the other hand, it is not radically different from its expected value of 229 (i.e., the

degrees of freedom), indicating that we are capturing most of the systematic variance.

Figures 9-11 reproduce the fits of the model to the data.  As can be seen, the actual

quality of the fits are generally good with correlations from .972 to .998.   The fits to the

imaginal buffer activity are particularly good, probability reflecting the large size of the

posterior parietal particle and hence very accurate estimate of the means.   They clearly

capture the relative magnitude of the bold responses in the conditions and this relative

magnitude is a parameter-free prediction depending only on the number of

transformations.  The fits to the DLFPC are quite good and again capture the relative

magnitude, which is a parameter-free prediction of number of retrievals.  In this case we

have a confirmation of Anderson, Reder, and Lebiere’s production system model's

assumptions about number of retrievals.  The fits to the motor region are slightly less
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good, reflecting the relatively poor signal-to-noise ratio.  Still the prediction is confirmed

that the peak of the BOLD response would shift with the time of the response.

Both the DLFPC particle and the Motor particle show some evidence that the BOLD

response actually goes below zero and then comes back up.  This is the major source of

the systematic deviations in the fits of the functions.  Glover (1999) has found similar

behavior in the motor region and he is able to predict this as the difference of two

separately parameterized BOLD functions.  We did not want to add such complications to

our model for this paper.  At the end of the paper we will return to this and other

complications that could be added to the mathematical treatment of the BOLD response.

So we have been able to predict three distinct BOLD in three regions from the activity of

the ACT-R modules.  It is of interest that we can do this with one BOLD function that

assumes a common exponent a and scale s for the three areas.  Allowing separate

estimates only increases the correlations marginally (for instance, the motor correlations

increase by .004).  Thus, it seems likely that our fits do reflect some common property of

the BOLD response in this experiment.

Experiment 2

Our explanation of the BOLD functions did not depend on the mathematical content of

the problems.  As noted others have associated left parietal and left prefrontal regions

with arithmetic processing.. It would be nice to have confirmation that our chosen areas
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did not have anything to do with the mathematical content of these problems.  To this end

we performed a second experiment that was similar to the previous but removed the

arithmetic and number properties of the previous domain.  This experiment will also

serve as an independent test of the functional assignment of the three areas of interest.

The experiment is adapted from the paradigm of Blessing and Anderson (1996) who were

interested in how college students would learn to perform transformations like those in

algebra.3  Our study will not involve as much training as Blessing and Anderson and so

our interest will not be in learning but only in the effect of number of transformations.

Table 5 illustrates the conditions of our experiment.  The participants saw strings that

were divided into a left and right side by a <->.  On both sides of this symbol were a

sequence of symbols which consisted of operators and operands.  Operators are encased

in circles. The participants' task was to isolate the special symbol P on the left and then

type all of the symbols that appeared on the right.  In the 0-transformation condition, the

string was already in this format and the participants simply had to type the four symbols

on the right.  In the 1-transformation condition there was an operator on the left before

the P, which had to be removed by “undoing”.  There were 4 operators that had different

rules of undoing:

 was undone by switching all  operators on the right to ® and vice versa

® was undone by switching the order of the two operands on the right

¯ was undone by switching all ¯ operators on the right to ° and vice versa

° could be undone by simply removing it.
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The participants had to memorize these four rules for undoing and apply them.  In the

third condition, 2 transformations, there was also an operator and operand after the P,

which had to be removed.  There were additional rules for removing these which

involved inverting the operator and moving the inverted operator and operand over to the

left. The  and ® operators were inverses of each other as were the ¯ and °

operators.  Order of precedence required that these two symbols first be moved over to

the right side before the operator before the P was undone.

Note that in all cases there were 4 symbols to be typed in the answer.  The subjects were

required to complete all transformations in their head before beginning to type the

answer.  When they had done so and were ready to output the answer they pressed their

thumb and then keyed the 4 numbers in the answer with their other fingers.  The answers

were always some sequence of the digits 2 through 5.  They were given 1.5 seconds to

key each digit to discourage efforts to compute the answers on the fly.  In fact, the time to

key the four digits did not vary with condition and only the time for the thumb press

varied.  The structure of the fMRI trial is illustrated in Figure 12.

Method

Only one factor, the computational complexity, was manipulated in the data analysis of

this experiment.  The 0-step transformation problems required no symbol arrangement,

but simply to copy the answer.  The 1-step transformation problems required only
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elimination of the operator symbol.  The 2-step transformation problems required first

moving terms over to the left side and then elimination.

Trial procedure

A trial began with a prompt, which is a column of two rectangles.  In the first rectangle,

the prompt appeared indicating the complexity of the upcoming problem.  After 1.5

seconds, the first rectangle was filled with the problem.  Participants were instructed to

solve the problem mentally, and press the thumb key when they were ready to key in the

final solution, upon which the problem in the first row disappeared.  We call the thumb

press as the plan time.  If the plan time exceeds 18 seconds, the trial was scored as

incorrect and the next trial began.  After the thumb press, they had 1.5 second to press

each of four symbols.  The correct answer appeared on the second row as the participants

typed in, even when they typed in a wrong answer or missed the 1.5 second response

window.  Then, a 6 second rest period followed.

Prescan Practice

On the day before the scan, there was a pre-scan session that lasted about 45 minutes.

Participants were introduced to new sets of rules, practiced finger-to-key mappings, and

practiced actual problem solving.  They first practiced 12 problems from the most

complex 2-step transformation problems with detailed step-by-step solution, 24 problems

of all 3 problem complexities with detailed step-by-step solution, and then 12 more

problems from all 3 complexities with no step-by-step solution.
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Event-related fMRI scan

The parameters of the event-related fMRI scan were same as in the algebra equation

solving experiment.  There were 15 blocks in the functional scan with 5 minutes and 30

seconds for each block.  We analyzed the first 12 scans starting from the one scan before

the presentation of the prompt.

Participants

Group analysis was done from 8 participants’ data (right-handed, native English

speakers, 3 males/5 females, aged from 18 to 27, average 20.6).  The same scanning

protocol was used as in the first experiment.

Results

Figure 13 shows the latency results from the experiment.  There are large and significant

effects of number of transformations (F (2,14) = 153.12; p<.0001, MSE = 256,156).  As

can be seen these latency effects are consistent with the ACT-R model that we will

present.  Overall accuracy was 75.1% and shows a strong negative correlation with

latency (r =  -.987).  Again, our analysis of latency and fMRI was restricted to trials

where the subject was correct.

Regions of interest were selected according to the interaction term in a 3 conditions x 12

scans ANOVA.  The 12 scans consisted of the two 1.5 scans before presentation of the

equation and the 10 scans afterwards.  To have a conservative test that dealt with non-

independence of scans we used that correction of assigning only 2 degrees of freedom to
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the numerator in the F statistic for the interaction term. The interaction was examined in

each voxel, and the selected regions met the criteria of minimum 6 contiguous voxels

with significant interaction at p <= .01.   Figure 14 and Table 6 gives the eight regions

which achieve this level of significance.4  Many regions overlap with those found in the

first study.  ROI 2 in this study is a large bi-lateral posterior parietal regions which

includes ROIs 1 and 3 from the previous experiment.   ROI 5 in this study is a left

DLFPC particle somewhat intermediate between the similarly behaving ROIs 4 and 5

from the previous study.  ROIs 6 and 7 in this study correspond to the regions with the

same numbering from the previous study.  There is no region corresponding to ROI 2

(anterior cingulate) from the previous study.  On the other hand, this study has ROI 1

which represents a motor area and ROI 4 which is a polar frontal particle.  The are also

two small particles, ROIs 3 and 8.

Figure 15 shows the average response to these 8 regions of interest.  The parietal (ROIs 2

and 3), prefrontal (ROI 5), motor (ROI 1), and supramarginal (ROIs 6 and 7) regions

show similar behavior to that observed in the first experiment. The polar frontal region

(ROI 4) shows a large negative response as has been observed in other studies (Gusnard

& Raichle, 2001)

To provide consistency with our prior modeling effort we will use the same posterior

parietal particle and the DLPFC particle (ROI 5) from the first study along with the motor

particle (ROI 1) found in this study.  Again they are illustrated in Figure 6.  Figure 16

displays the behavior of these three particles as a function of scan and condition.  The
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figure also contains the predictions of the model that we will describe shortly.  The three

regions are quite distinct in their behavior.  Both the parietal particle  and the DLPFC

particle show a response that varies with number of transformations.  However, the

parietal particle shows a substantial response even in the presence of no transformations

while the DLPFC particle shows no response in this case.  The Motor particle does not

show a differential magnitude of response but a differential delay in the response as a

function of number of transformations.

Figure 17 illustrates the activity of the ACT-R modules during a solution of one of these

equations.  The encoding begins with the identification of <-> sign and then the encoding

of the symbols to the right of the sign.  Then begins the process of encoding the elements

to the left of the sign and their elimination in order to isolate the P.  This is similar to the

process in the previous algebra experiment of encoding the value to the right of the equal

sign followed by undoing the operations to the left of the sign in order to isolate the X.  In

the example in Figure 17, six operations are required to encode the string and an

additional two operations to encode the transformation.  If there were no transformations

there would be 5 encoding operations which is 3 less (one less symbol in the screen and

two fewer symbols to change).  If there were two transformations there would be 10

operations because two additional symbols that have to be changed.  With respect to

retrievals it is necessary to retrieve two pieces of information for each transformation that

must be performed. One piece was the operation to perform ("flip" in Figure 17) and the

other the identity of the terms to apply this operation to (arguments in Figure 17).  Thus,

there are 5, 8, or 10 visual operations, and 0, 2, or 4 retrieval operations.  In all cases
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there are the final 5 motor operations but their timing will vary with how long the overall

process takes.  The first motor action takes .4 seconds but because of features saved in

programming subsequent finger presses, the remaining actions take .3 seconds.

To make the fits from the two experiments comparable, we constrained the scale (s) and

exponent (a) parameters to be the same as estimated in the previous experiment.  This

means that the shape of the underlying BOLD function will be the same in the two

experiments.  Thus, the estimated parameters are the magnitude and offset parameters for

each condition. As Table 4 reveals, the magnitude parameters are similar but somewhat

smaller in this experiment.  The degrees of freedom are the 108 observations (13 regions

x 3 conditions x 12 scans) minus the 12 parameters or 96.  The chi-square deviation was

204.73, which is significant and once again indicates are fit is only approximate.

Nonetheless, as can be seen from Figure 16 the model does a good job in accounting for

the behavior of the three regions.  In this experiment with the five finger movements the

behavior in the motor region is particularly clear and well fit by the model.  The fit to the

DLPFC particle may be again suffering from the failure of the current BOLD function to

predict an undershoot in the end of the BOLD response  The prediction for the DLPFC

particle in the 0-transformation condition is particularly dramatic--a flat function because

there are no retrievals.  While the actual data may show the slightest of rises and

undershoots, they provide a close approximation to this strong parameter-free prediction.

Conclusions
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First, we would like to begin with some discussion of the approximations in our

mathematical treatment.  As already noted, we assume the same BOLD function for each

region (except for the multiplicative magnitude, M) whereas it is plausible the function

might vary a little.  Also, we ignore the potential undershoot as the function goes back to

baseline.  Another issue is the fact that we have ignored the variability in the timing of

responses between and within subjects and the model assumes a single mean time for the

processing in each condition.  The consequence of this approximation perhaps shows up

most clearly in Figure 16c where the longer and more variable conditions resulted in a

lower and wider BOLD response.  We think that all of these approximations are more

than justified by the greater simplicity and interpretability of the resulting model.  We do

not think they at all compromise the basic conclusions.  It is also probably the case that

our offset parameters somewhat correct for these approximations.

A more fundamental issue has to do with the assumption that the BOLD response

increases linearly with the length of an event and is additive across multiple events.

While there is evidence for this as an approximate characterization in some situations

(e.g., Boyton, 1996; Dale & Buckner, 1997) it does not seem to be universally the case

(e.g., Glover, 1999) with evidence for sublinear growth with duration and sub-additivity

across events.  This could potentially seriously compromise the logic of this and related

research in a way that we could not recover from without a basis for characterizing the

non-linearities and non-additivities.  It remains an open issue just how serious a matter

this is, but in our mind it is the major question about the modeling methodology in this

paper.
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As an empirical summary, this research is largely consistent with existing associations in

the literature of parietal cortex with visual and imaginal processing, the prefrontal cortex

with retrieval, and the region of somatosensory cortex that represents the right hand with

the manual buffer.  Each of these associations deserves a little comment.  First, while

there was bilateral activation of the parietal cortex it was stronger in the left, consistent

with other research on arithmetic and imagery processing in language.  This is perhaps

consistent with the semantic and somewhat abstract nature of the task.  Perhaps why the

activation was more bilateral in the second study was that we had removed much of the

semantic associations and made it a more pure visual task.

Second, our retrieval focus was found in left  BA 45/46.  Left prefrontal cortex has been

associated with semantic retrieval.  However, much of what participants in our

experiment were retrieving was not classic semantic information.  The algebra knowledge

and arithmetic knowledge in the first study would seem classic semantic.  However, we

also found an effect of retrieval of just-memorized constant values in Experiment 1 and

of algebraic transformations just learned in Experiment 2. While our retrievals are not

semantic in the sense of having been long-learned they are semantic in the sense of being

decontextualized knowledge. It is also the case that our region is anterior to the area 44

that seems to have most been found in previous studies of semantic retrieval.  We did

find very similar activation is high BA 44 (not classic Brocas) which was strongly

correlated with the activity in BA 45/46.  However, we focused on BA 45/46 in part

because it was more strongly related to number of transformations, showing no rise at all
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when there was no retrievals required.  Interesting, episodic retrieval more often appears

to activate right BA 46 than right BA 44.

Finally, we should comment on the fact that our manual buffer was associated with

activation in the somatosensory area corresponding to the right hand as well as the motor

area.  In fact, the motor ROI  is very similar to the region identified by Roland et al

(1980) when a finger is pressed. It was said (Kolb & Wilshaw, 1990) that in descending

motor pathway (Pyramidal tract) for voluntary movement, there are about 1,000,000

fibres, in which 60% come from precentral (BA 4, 6) and 40% come from post central

areas (BA 3a, 5).

This paper is built around a tentative mapping from ACT-R buffers to the BOLD

response.   Undoubtedly, this mapping will have to be revised with further evidence.

However, we think the most important contribution of this paper is the conception it

offers of how the detailed processing of an information-processing theory like ACT-R

can make precise predictions about the BOLD response.  We would hope that this

conception would survive any revisions in ACT-R and its mapping to brain function.

Indeed, we would hope that this same conception can be incorporated by other

information-processing theories.

The basic idea is that the BOLD response reflects the duration for which various

cognitive modules are active. The typical additive-factors information-processing

methodology has studied how manipulations of various cognitive components affect a
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single aggregate behavioral measure like total time.  If we can assign these different

components to different regions we have essentially a separate dependent measure to

track each component.  Therefore, this methodology promises to offer strong guidance in

the development of an information-processing theory.

Finally, we want to comment on the surprising match of fMRI methodology to the study

of complex tasks.  A problem with fMRI is its poor temporal resolution.  However, as is

particularly apparent in the behavior of our manual buffer, the typical effect size in a

complex mental task is such that one can still make temporal discriminations in fMRI

data.  One might have thought the outcome of such a complex task would be purely

uninterpretable.  However, with the guidance of strong information-processing model and

well-trained participants one can not only interpret but predict the BOLD response in

various regions of the brain.
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Table 1

Example of the Materials in the Algebra Experiment

Extension of Anderson, Reder, & Lebiere (1996)

No Substitution Substitution

0 Transformations 1x + 0 = 06 ax + 0 = c (a = 1; c = 6)

1 Transformations 2x + 0 = 12 or 1x + 9 = 18 ax + 0 = c (a = 2; c = 12)

2 Transformations 3x+5 = 23 ax + b = 23 (a = 3; c = 5)
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Table 2

Regions of Interest, location of centroids, and significance for
Experiment 1

BA Voxel
Count

Stereotaxic
Coordinates (mm)

Maximum F
(Average F)

Region of Interest

x y z
1. Left Posterior Parietal 39,40 190 -30 -55 38 5.50 (4.09)

2. Anterior Cingulate 32 32 1 15 39 4.56 (3.98)

3. Left Precuneus 7 10 -2 -66 45 4.27 (3.98)

4. Left Inferior Frontal Gyrus 44 62 -43 4 23 5.19 (4.19)

5 Left Dorsolateral Prefrontal 45/46 29 -42 28 18 4.78 (4.02)

6. Right Supramarginal Gyrus 40 33 58 -18 22 4.13 (3.81)

7. Left Supramarginal Gyrus 40 36 -51 -20 19 4.41 (3.86)
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Table 3
Intercorrelations among the activation functions in the various Regions

of Interest Identified in Experiment 1

Roi 2 Roi 3 Roi 4 Roi 5 Roi 6 Roi 7

Roi 1 0.824 0.918 0.814 0.703 -0.364 0.201

Roi 2 0.686 0.609 0.404 -0.325 -0.008

Roi 3 0.632 0.600 -0.207 0.304

Roi 4 0.908 -0.536 0.0508

Roi 5 -0.551 0.0495

Roi 6 0.699
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Table 4 Parameters estimated for Experiment 1 & 2

(a) Experiment 1

Visual Imaginal Retrieval Manual
Scale (s) 1.383 1.383 1.383
Exponent (a) 3.670 3.670 3.670
Magnitude (M) 0.219 0.074 0.330
Scan 1 Offsets
No sub, 0 Trans 0.044 -0.113 -0.037
No sub, 2 Trans -0.001 -0.061 -0.082
No sub, 1 Trans -0.021 0.030 -0.040
No sub, 0 Trans 0.038 -0.034 -0.056
No sub, 2 Trans -0.011 0.042 -0.097
No sub, 1 Trans 0.003 0.042 -0.092

(b) Experiment 2

Visual Imaginal Retrieval Manual
scale (s) 1.383 1.383 1.383
exponent (a) 3.670 3.670 3.670
magnitude (M) .0127 0.055 0.240
Scan 1 Offsets
O Trans 0.011 -0.049 0.014
1 Trans 0.030 -0.035 -0.006
2 Trans 0.050 -0.023 -0.052
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Table 5
Symbolic Reasoning Experiment

Based on Blessing & Anderson (1996)

Example of eq uat ions:
st ep equati on answer
0 st ep P<->�4�5 P<->�4�5

1 st ep �P  <->�4�5 P<->�4�5

2 st ep �P�4< ->�5 P<->�5�4
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Table 6
Regions of Interest, location of centroid,

and significance for Experiment 2

BA Voxel Count
Stereotaxic
Coordinates

(mm)

Maximum F
(Average F)Region of Interest

x y z

1. Left Motor 1-4 290 -40 -24 49 16.10 (9.56)

2. Bilateral Posterior Parietal 39,40 710 -2 -66 36 26.75 (8.59)

3. Left Posterior Parietal 40 6 -33 -49 43 6.95 (6.70)

4. Polar Frontal 10 191 -2 55 19 10.50 (7.84)

5 Left Dorsolateral Prefrontal 46/9 31 -45 21 26 8.87 (7.43)

6. Right Supramarginal Gyrus 40 25 63 -26 26 9.44 (7.46)

7. Left Supramarginal Gyrus 40 28 -54 -24 19 10.55 (7.69)

8. Right Lingual Gyrus 19 11 13 -54 2 7.42(6.84)
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Figure Captions

Figure 1 A representation of the information flow in ACT-R 5.0.

Figure 2 The 21 second structure of an fMRI trial in Experiment 1.

Figure 3 Mean latency in Experiment 1 as a function of number of transformations

for the substitution and the No Substitution condition.

Figure 4 Activation map showing areas in Experiment 1 with a significant

interaction between scan and condition.  Only regions with more the 6 contiguous voxels

and p<.01 are shown. See Table 2 for identification of regions.

Figure 5 Average activation functions for the seven regions of interest from

Experiment 1.

Figure 6 An illustration of the three left ROI's for modeling.

Figure 7 Contrasting behavior of the three focus regions in the two most extreme

conditions of the experiment.

Figure 8 Buffer activity for the ACT-R model of Experiment 1.
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Figure 9 Ability of the imagery buffer to predict posterior parietal particle: (a)

effects of number of transformations and (b) effects of substitution.

Figure 10 Ability of Retrieval Buffer to predict DLPFC particle: (a) effects of

number of transformations and (b) effects of substitution.

Figure 11 Ability of Manual Buffer to predict Motor particle: (a) effects of number

of transformations and (b) effects of substitution.

Figure 12 18 second structure of an fMRI trial in Experiment 2

Figure 13 Mean latency in Experiment 2 as a function of the number of

transformations.

Figure 14 Activation map showing areas in Experiment 2 with a significant

interaction between scan and condition.  Only regions with more the 6 contiguous voxels

and p<.01 are shown.  Slice 18 is the AC-PC line. See Table 6 for identification of

regions.

Figure 15 Average activation functions for the eight regions of interest from

Experiment 2.

Figure 16 BOLD response in Experiment 2 as a function of scan for 0, 1, and 2

transformations: (a) Posterior Parietal particle, (b) DLPFC particle, and (c) Motor

particles.  ACT-R predictions are in BOLD.

Figure 17 Buffer activity in the ACT-R model for Experiment 2.
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9a

Figure 9b

Imaginal Predicts Posterior Parietal
r = .998
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Figure 10a

Figure 10b

Retrieval Predicts DLPFC (BA 46)
r = .991
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Figure 11a

Figure 11b

Manual Predicts Motor, r = .972
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Figure 12

��Px�4<->��5

1.5 Second Scans

Prior Equation Blank 
Period

Give
Answer

1-3-5-3-4



58

Figure 13
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Figure 14
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Figure 15
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Figure 16a

Figure 16b

ROI 1; r = .966
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Figure 16c

Motor, r = .986
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Figure 17
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1 The earlier Anderson et al studies were also concerned with an interaction between the
size of the load and the physical complexity of the equation.  This is an issue that we will
not be pursuing here.
2 (http://kraepelin.wpic.pitt.edu/his/index.html)
3 An ACT-R model for a learning version of this task is to be found in Blessing
(dissertation).
4 ROI 8 is a small particle occurring in slices 18-20, not shown in the figure.


